Articoli del meseArticoli del mese

Articoli del mese


Stampa articolo

Articolo del Mese - Febbraio 2019

Viaggio verso il data warehouse logico
Il grande dilemma della business intelligence

Rick van der Lans by Rick van der Lans

Qual è la data di scadenza dell’architettura tradizionale del data warehouse? Ecco come sviluppare un’architettura bi-modale di data warehouse logico basata sulla virtualizzazione dei dati Ogni tecnologia, ogni architettura e ogni tecnica di progettazione ha una data di scadenza. E questo è vero soprattutto per il mondo dell’IT. Sarebbe inconcepibile che i linguaggi assembler, i database gerarchici e le tecniche di progettazione a cascata fossero ancora utilizzati per sviluppare i complessi sistemi di oggi. E la business intelligence non fa eccezione: il cuore dei più attuali sistemi di BI è costituito da un’architettura tradizionale di data warehouse, inizialmente progettata per supportare forme classiche di reporting. Per tali sistemi, aspetti come una migliore governance, l’alta qualità dei dati e la stabilità giocano un ruolo chiave. Per offrire queste caratteristiche, i sistemi di BI sono accompagnati da processi rigidi di sviluppo, operatività e gestione. L’architettura tradizionale del data warehouse ha avuto una lunga carriera di oltre venticinque anni, nei quali ha servito al meglio innumerevoli aziende, ma per molte di queste ha ormai superato la data di scadenza. Data l’architettura rigida, molti nuovi requisiti di BI sono difficili da implementare con i sistemi di BI esistenti. Per esempio, i sistemi di BI devono supportare nuove forme di reporting e di analisi, come la BI self-service, le analisi investigative, la data science, gli utenti esterni come clienti online, partner e fornitori, le nuove tecnologie di memorizzazione come Hadoop e NoSQL, le fonti di dati esterne, come i dati sui social media e gli open data, e infine le grandi quantità di dati. Inoltre, è necessario accelerare il time to market per i report. Le aziende sanno che il loro attuale sistema di BI non può essere buttato via, perché i carichi di lavoro di reporting esistenti devono continuare a funzionare. Ma come dovrebbero implementare questi nuovi carichi di lavoro di BI e integrarli in qualche modo con il sistema esistente? Molte aziende lottano con questo dilemma, cercando di risolvere il problema sviluppando molte isole analitiche e, dato che poche specifiche sono condivise da un’isola all’altra, i business analyst si trovano a dover sempre reinventare la ruota. Inoltre, è quasi impossibile garantire una coerenza tra i report classici e i nuovi carichi di lavoro della BI. In che modo le vecchie e nuove forme di BI possono essere supportate dallo stesso sistema? È il grande dilemma della BI che va risolto. Sono necessarie nuove architetture di BI che supportino lo stile tradizionale e un po’ rigido dello sviluppo della BI con il nuovo stile di sviluppo introdotto dai nuovi requisiti di BI.

Le architetture bi-modali - Nel 2014, Gartner ha introdotto il concetto di bi-modale. Il termine “bi-modale” si riferisce a due modalità di sviluppo IT. La Modalità 1 è lo stile classico di sviluppo, in cui ogni sistema deve essere affidabile, prevedibile e corretto. I sistemi devono essere testati, governati e gestiti formalmente, devono essere verificabili e così via, mentre la Modalità 2 corrisponde agli stili di sviluppo più agili che si concentrano sulla velocità e sull’agilità, oltre a supportare la sperimentazione, la flessibilità e l’analisi self-service. Secondo i dati di un’indagine di Gartner del 2014, il 45% dei CIO diceva di operare in Modalità 2, con la previsione che entro il 2017 il 75% di tutte le organizzazioni IT avrebbero operato in maniera bi-modale, supportando cioè entrambe le modalità. Le specifiche Modalità 1 e Modalità 2 corrispondono rispettivamente allo sviluppo di report classici e allo stile di sviluppo utilizzato dalle nuove forme di business intelligence. In BI, i report classici (Modalità 1) devono essere affidabili, prevedibili, testati, governati, riproducibili, e così via, mentre le nuove forme di BI (Modalità 2) sono più sperimentali, flessibili e orientate al self-service. La sfida, per la maggior parte delle aziende, è come trasformare il loro attuale sistema di BI in un moderno sistema di BI che supporti entrambe le modalità di sviluppo. In altre parole, devono trasformare il loro sistema di BI unidirezionale in uno bi-modale.

L’architettura di data warehouse logico - Una nuova architettura adatta allo sviluppo di sistemi di BI bi-modali è l’architettura di data warehouse logico. È un’architettura agile per lo sviluppo di sistemi di BI in cui i consumatori dei dati e gli archivi dei dati sono disaccoppiati gli uni dagli altri. L’architettura di data warehouse logico presenta tutti i dati memorizzati in un insieme eterogeneo di archivi dati come un singolo database logico. I consumatori di dati non devono essere consapevoli di dove e come sono archiviati i dati. E non devono preoccuparsi neppure se i dati che stanno utilizzando provengono da un data mart, da un data warehouse o da un database di produzione. Non devono essere consapevoli del fatto che i dati provenienti da più archivi di dati devono essere uniti, né devono sapere se stanno accedendo a un database SQL, a un cluster Hadoop, a un database NoSQL, a un servizio Web o semplicemente a uno o più file flat. Anche la struttura degli archivi dati è nascosta: i consumatori di dati vedono solo i dati in un modo che è comodo per loro e vedono solo i dati rilevanti per il loro compito. Tutto ciò è ottenuto disaccoppiando i consumatori di dati dagli archivi di dati. L’obiettivo principale del disaccoppiamento è ottenere un maggiore livello di flessibilità. Per esempio, le modifiche apportate agli archivi dati non significano automaticamente che anche i report devono essere modificati, e viceversa. Oppure, sostituire una tecnologia di data store con un’altra è più semplice quando quell’archivio dati è “nascosto” dietro l’architettura del data warehouse logico. In questa architettura, l’adozione di big data è relativamente semplice, l’accesso ai dati in tempo reale è meno complesso per i consumatori di dati, e gestire i dati basati su cloud diventa semplice.

I vantaggi della virtualizzazione dei dati - I sistemi di BI con questa architettura possono presentare la stessa robustezza del data warehouse tradizionale per le forme standard di reporting. Inoltre, sono più adatti a supportare nuove fonti di dati, come i big data e gli open data; possono gestire più facilmente nuove tecnologie di archiviazione dei dati, come Hadoop e NoSQL; si adattano meglio al dinamico mondo della BI self-service; semplificano il supporto per l’analisi investigativa e la data science; infine, accelerano lo sviluppo e facilitano la manutenzione con meno risorse. Diverse tecnologie consentono lo sviluppo di un sistema di BI basato su un’architettura di data warehouse logico, come i database server in-memory e la tecnologia di data grid. Tuttavia, la tecnologia di virtualizzazione dei dati offre la soluzione migliore, in quanto supporta quasi tutte le funzionalità necessarie per sviluppare, eseguire, proteggere e gestire un data warehouse logico. La virtualizzazione dei dati offre funzionalità per la sicurezza dei dati, scalabilità, prestazioni, sviluppo, riutilizzo dei metadati, individuazione e ricerca, accesso ai big data, etc. Ma soprattutto offre un livello di astrazione completo che disaccoppia i consumatori di dati dagli archivi di dati.

In conclusione - Il grande dilemma della BI è un vero problema per molte aziende. Sfortunatamente, non esiste uno strumento soprannaturale in grado di trasformare magicamente un sistema di BI esistente in un sistema di BI bi-modale. La soluzione deve essere trovata nella configurazione di sistemi di BI con un’architettura diversa. L’architettura del data warehouse logico è per definizione pronta per la modalità multimodale. Inoltre, la tecnologia di virtualizzazione dei dati ha raggiunto il livello di maturità necessario per sviluppare un’architettura di data warehouse logico. In altre parole, non ci sono ostacoli nel viaggio verso il data warehouse logico.

Per Technology Transfer, Rick van der Lans presenterà a Roma nella prossima primavera i seminari: Incorporare Big Data, Haddop e NoSQL nei sistemi di Data Warehouse e BIil 15-16 aprile 2019 e “Il Logical Data Warehouse: Design, Architettura e Tecnologiail 16-17 maggio 2019.

Viaggio verso il data warehouse logico <br />Il grande dilemma della business intelligence - Technology Transfer

Viaggio verso il data warehouse logico
Il grande dilemma della business intelligence

Rick van der Lans

Enterprise information catalog. I requisiti per fare la scelta giusta
Mike Ferguson

La nuova era dell’analisi predittiva - Le aziende alla prova del Machine Learning
Frank Greco

Uno sguardo Agile - Per capire il passato e progettare il futuro
Arie van Bennekum

Trasformazione Agile
Se il product owner diventa un collo di bottiglia

Sander Hoogendoorn

Una Fiat o una Ferrari?
Qual è la più adatta per il business digitale?

Barry Devlin

Vincere la complessità dei dati. È l’ora dello smart data management
Mike Ferguson

Big Data e Analytics - Se il machine learning accelera anche la data science
Mike Ferguson

I dati al centro del business
Christopher Bradley

I Big Data forniscono il contesto e la ricchezza predittiva attorno alle transazioni di business Avere dati coerenti e di qualità resta fondamentale per il processo decisionale
Barry Devlin

Cosa c’è dietro l’angolo? Cinque mosse per diventare un digital leader
Jeroen Derynck

Managing information technology Gestire l’IT come un business nel business
Mitchell Weisberg

Data integration self-service Miglioramento della produttività o caos totale?
Mike Ferguson

Project manager vecchi miti e nuove realtà
Aaron Shenhar

La catena alimentare dei requisiti
Suzanne Robertson

Come diventare un’azienda data-centric
Lindy Ryan

Enterprise analytical ecosystem - Come comprendere il comportamento online dei clienti e capitalizzare il valore dei dati nell’era Big Data
Mike Ferguson

Agilità? Basta Volere
Suzanne Robertson

Ma la vostra architettura è efficace?
Mike Rosen

Se il NoSQL diventa SQL
Rick van der Lans

La data quality e l’impatto sul business
Danette McGilvray

Business analysis e regole di business By Ronald G. Ross con Gladys S.W. Lam
Ronald Ross

Usare Scrum su larga scala: cosa cambia?
Craig Larman

Le architetture per ridurre il debito tecnico
Mike Rosen

Conversando con un marziano
Suzanne Robertson

Cosa c’è di nuovo nel project management?
Aaron Shenhar

Reinventare la Business Intelligence
Barry Devlin

Il nuovo volto della business intelligence
Shaku Atre

Alla ricerca del valore tra i pomodori nell'orto
John Favaro

I big data cambiano il mercato dei Database Server
Rick van der Lans

Un “superstorm” di informazioni
Barry Devlin

I dieci step per la qualità dei dati
Danette McGilvray

Perché è meglio evitare il private cloud?
Jason Bloomberg

Leonardo da Vinci aveva ragione!
Chris Date

Mobile user experience: Come adottare una strategia sostenibile
James Hobart

Cosa significa occuparsi di architettura?
Mike Rosen

Virtualizzazione dei dati e sistemi di Business Intelligence Agili
Rick van der Lans

Modelli e linguaggi naturali, quale il modo migliore per definire i requisiti?
James Robertson

Extreme Scoping: un approccio Agile all'Edw e alla BI
Larissa Moss

BI², la Business Intelligence al quadrato
Barry Devlin

I test di regressione in ambienti legacy
Randy Rice

Le conseguenze della consumerizzazione e del Cloud
Chris Potts

Come vanno gli affari? Chiedetelo al vostro cruscotto
Shaku Atre

Organizzare team di progetto efficienti in ambienti DW/BI
Larissa Moss

Big Data, come e perché
Colin White

Business Capabilities e l'allineamento del business all'IT
Mike Rosen

Il valore della tassonomia nella ricerca delle informazioni
Zach Wahl

BI, ma il Data Warehouse è ancora necessario?
Colin White

Reinventare la Business Intelligence
Barry Devlin

Il cruscotto delle prestazioni: il nuovo volto della Business Intelligence
Shaku Atre

Modelli e processi di User acceptance testing
Randy Rice

I limiti nel gestire l'IT come un Business
Chris Potts

Le componenti fondamentali del Cloud
George Reese

Metadati e DW 2.0
Derek Strauss

BI Open Source: basso costo e alto valore?
Jos van Dongen

Semplicità e requisiti
Suzanne Robertson

Business intelligence e analisi testuale
Bill Inmon

Extreme Scoping™: approcci agili al DW e alla BI
Larissa Moss

Dalla BI a un'architettura IT di livello Enterprise
Barry Devlin

Ambiente efficiente di ricerca di informazioni
James Hobart

Il Business deve trainare la Strategia IT
Chris Potts

Web database: la questione MapReduce (seconda parte)
Colin White

Web database: la questione MapReduce
Colin White

Misura delle prestazioni. I sette comandamenti
Harry Chapman

Le dieci cose che un architetto deve fare per creare valore
Mike Rosen

Sviluppare applicazioni a prova di sicurezza
Ken van Wyk

The ECM Landscape in 2008
Alan Pelz-Sharpe

Ma chi sono gli operatori dell’informazione?
Colin White

Qualità dell’informazione e trasformazione del management
Larry English

Classificazione sistematica delle informazioni
Zach Wahl

L’uso intensivo del Web nelle applicazioni di Bi
Colin White

Enterprise Search
Theresa Regli

La forza dell'astrazione
Steve Hoberman

La strada verso una BI pervasiva
Cindi Howson

Soa, una strategia di test
Randy Rice

Verso una BI più semplice e a minor costo
Colin White

I contenuti “Killer” del Web
Gerry McGovern

Sviluppo iterativo del software per i Dw
Larissa Moss

Qualità delle Informazioni e Datawarehousing
Larry English

Lo scenario Ecm 2008
Alan Pelz-Sharpe

La nascita del Web 3.0
John Kneiling

Documentazione: il dossier del crimine
Suzanne Robertson

L’impatto del Web 2.0 sui portali delle imprese
Colin White

Le tecniche vincenti di IT Management
Ken Rau

Web 2.0
Ed Yourdon

Web di successo se si conosce il cliente
Gerry McGovern

Un approccio alla BI incentrato sui processi
Colin White

Integrare Master Data Management e BI (Parte Seconda)
Mike Ferguson

Integrare Master Data Management e BI (Parte Prima)
Mike Ferguson

Il Project Manager è una Tata
Suzanne Robertson

Web di successo se si conosce il cliente
Gerry McGovern

L'informazione personalizzata
Colin White

La Tassonomia dell'Impresa
Zach Wahl

Managed Meta Data Environment (II parte)
David Marco

Managed Meta Data Environment
David Marco

Migliorare le applicazioni dell'impresa con Web 2.0
James Hobart

La Balanced Scorecard migliora la Performance dell'IT
Harry Chapman

La fusione dei processi dell'impresa grazie a Soa (II parte)
Max Dolgicer

La fusione dei processi dell'impresa grazie a SOA (I parte)
Max Dolgicer

Volere è Potere, in Ogni Senso
Suzanne Robertson

Dimostrate con i numeri il valore dei contenuti del web
Gerry McGovern

Il Back-end della pianificazione strategica dell'It
Ken Rau

L'audit delle prescrizioni di progetto (II parte)
Suzanne Robertson

L'audit delle prescrizioni di progetto (I parte)
Suzanne Robertson

Il Processo di gestione delle informazioni
Ted Lewis

I requisiti come strumento di gestione dei progetti
Suzanne Robertson

Il futuro è nel contenuto killer del web
Gerry McGovern

Alla ricerca del valore tra i pomodori nell'orto
John Favaro

Rilevare i costi sulla base delle attività
Ken Rau

Un percorso verso l'impresa intelligente (II parte)
Mike Ferguson

Un percorso verso l'impresa intelligente (I parte)
Mike Ferguson

Il Data Store Operativo: un lavoro di martello
Claudia Imhoff

Il data warehouse orientato all'impresa
Michael Schmitz

Dieci punti chiave per realizzare balanced scorecard di successo
Harry Chapman

Content management: i contenuti al primo posto
Gerry McGovern

Applicazioni Web ad alta disponibilità
John Kneiling

Il 2004, sarà l'anno in cui abbandoneremo html?
James Hobart

La tecnologia EII ripropone il data warehousing virtuale?
Colin White

Misurare per Gestire
Ken Rau

Volere è Potere, in Ogni Senso
Suzanne Robertson

Realizzare il CPM e l'integrazione della BI
Mike Ferguson

Tutti i punti della FPA
Koni Thompson

Requiem per il Portale?
Colin White

Business Intelligence: dalla teoria alla realtà (II parte)
Shaku Atre

Business Intelligence: dalla teoria alla realtà (I parte)
Shaku Atre

I portali Corporate e di E-business: la nuova generazione del posto di lavoro
Mike Ferguson

I 10 errori da evitare nella realizzazione di un Meta Data Repository (II Parte)
David Marco

I 10 errori da evitare nella realizzazione di un Meta Data Repository (I parte)
David Marco

Usare i modelli per acquisire l'esperienza di progettazione
James Hobart

Realizzare l'Impresa Intelligente
Colin White

.NET or J2EE - Choosing the Right Web Services Framework
John Kneiling

Progettare Applicazioni Mobili di Successo
James Hobart

La Sociologia del Progetto: Identificare e Coinvolgere tutti i Partecipanti
Suzanne Robertson

Integrare la Business Intelligence nell'Impresa (II parte)
Mike Ferguson

Integrare la Business Intelligence nell'Impresa (I parte)
Mike Ferguson

L'Evoluzione del Portale di e-Business (II parte)
Colin White

L'Evoluzione del Portale di e-Business (I parte)
Colin White

Il Consulente WebEAI: Servizi Web, XML e l'Impresa
John Kneiling

Data Mining: Come Gestire le Relazioni con i Clienti Secondo i Principi del CRM
Weaver James

Articoli del mese - Technology Transfer