Articoli del meseArticoli del mese

Articoli del mese


Stampa articolo

Articolo del Mese - Luglio 2018

Una Fiat o una Ferrari?
Qual è la più adatta per il business digitale?

Barry Devlin by Barry Devlin

I veicoli a guida autonoma sono un ottimo esempio di come l’IoT e l’AI stiano reinventando il mondo dei trasporti. Ma costituiscono anche una suggestiva metafora di come la rivoluzione digitale stia reinventando ogni aspetto del business e dell’IT, oltre che spingendo verso una nuova architettura per la gestione delle informazioni e il supporto decisionale.

I veicoli autonomi, cioè auto, camion e autobus che si guidano da soli, hanno catturato l’immaginazione del pubblico. Dalla fantascienza ai progetti pilota su strada, i veicoli autonomi sono diventati una realtà nell’arco di pochi anni. I costruttori di automobili di tutto il mondo sono all’opera e pianificano l’uscita di modelli con autonomia significativa entro il 2020. Le implicazioni per guidatori, produttori di automobili, pianificatori stradali e la società in generale sono di ampio respiro, come vedremo tra poco. Ma c’è un’angolazione ancora più interessante che si applica a tutti i settori: la loro stessa comparsa e gli impatti dei veicoli autonomi offrono una metafora per il business digitale. Dalla raccolta dei dati al processo decisionale, colpisce il parallelismo tra auto a guida autonoma e business di ogni tipo. La tua azienda ha bisogno di un’architettura modello Fiat o Ferrari? Ne parlerò nella seconda parte di questo articolo.

Veicoli autonomi: utopia o distopia? - Il percorso verso l’autonomia dei veicoli è iniziato circa vent’anni fa, quando le auto dovevano essere dotate di sensori di base e di diagnostica di bordo standard. Le auto hanno iniziato a raccogliere dati rudimentali, come la temperatura del motore e la pressione dell’olio. Con un numero maggiore di sensori e controller di bordo più sofisticati, le automobili hanno ottenuto il primo barlume verso l’essere senzienti. Per esempio, potrebbero monitorare l’aderenza alla strada per evitare lo slittamento o il bloccaggio delle ruote, oppure potrebbero spegnersi prima di essere danneggiate da problemi meccanici. Negli ultimi anni, le informazioni raccolte e utilizzate dai veicoli, come posizione e velocità, svolta e frenata, consumo di carburante, condizioni meteorologiche e di traffico esterne, utilizzo delle cinture di sicurezza e altro, sono cresciute in termini di varietà e volume. Con una combinazione di dati provenienti dall’interno e dall’esterno, processori più veloci e algoritmi migliorati, sono emersi nuovi usi. L’attenzione si è spostata dal monitoraggio delle prestazioni e dalla manutenzione preventiva del veicolo per inferire il comportamento del guidatore e supportarne il miglioramento. Dalla gestione automatizzata del traffico all’assicurazione automobilistica pay-as-you-drive, i dati raccolti dalle auto di oggi costituiscono il fondamento di nuove applicazioni e nuovi business. Con il passaggio verso i veicoli autonomi, i volumi e i tipi di dati raccolti aumenteranno ulteriormente e gli usi cambieranno notevolmente: sia nell’industria sia nell’ambito pubblico, i vecchi processi scompariranno e ne emergeranno di nuovi. L’assicurazione di guida personale non sarà più necessaria, la polizia stradale diventerà ridondante e le patenti di guida diventeranno oggetti d’antiquariato man mano che camion, auto e autisti di autobus perderanno il proprio lavoro. Guidare per il solo piacere di farlo potrebbe addirittura essere considerata un’abitudine più antisociale del fumo! D’altra parte, la produzione automobilistica diventerà più rispettosa dell’ambiente in quanto i volumi caleranno vertiginosamente. I parcheggi coperti e quelli in strada spariranno. L’urbanistica passerà dalla gestione del traffico alla valorizzazione della vita umana. Però, una completa cronologia di viaggio personale potrà essere tracciabile da mega-corporazioni ed enti pubblici simili a Uber. L’auto che era il posto più privato per il primo appuntamento più galante del solito potrebbe diventare il dispositivo di sorveglianza più all’avanguardia. Questo elenco suggerisce che l’impatto dei veicoli autonomi sulla società potrebbe superare qualsiasi cosa possiamo immaginare attualmente. Lo stesso si può dire se si guarda al business digitale, ovvero all’uso diffuso dei dati dei sensori, cioè l’Internet of Things (IoT), e all’intelligenza artificiale (AI) in tutti i settori.

Business digitale: successo o fallimento? - Dalla finanza alla produzione, dalla vendita al dettaglio alle utilities, dagli enti governativi a quelli di beneficenza, la combinazione di IoT e AI (in proporzioni diverse) interromperà potenzialmente ogni processo aziendale e IT da cui dipende la vostra organizzazione. (Per semplificare, includo il settore pubblico e quello del volontariato nel termine “business”). Vendite e marketing basati sulla localizzazione in tempo reale e sui dati dei social media. Distribuzione tramite droni, gestita in tempo reale. Manutenzione proattiva, guidata da un monitoraggio continuo e analisi avanzate. Vendita al dettaglio senza casse o negozi con soli oggetti campione. Decisioni di tipo middle management prese da algoritmi. Fake news che disturbano la politica e la democrazia. L’elenco continua, sollevando domande vitali per l’IT. Siamo pronti a raccogliere e gestire lo tsunami di dati? Come i veicoli autonomi, le aziende dovranno gestire i dati di latenze molto diverse. L’elaborazione istantanea di enormi set di dati è necessaria per evitare incidenti stradali. Reagire a potenziali frodi nel commercio al dettaglio o nell’ambito finanziario, oppure affrontare in tempo reale problemi alla supply chain, presentano problemi analoghi sia di dati sia di elaborazione. D’altro canto, si dovrà sempre consegnare rapporti di fine mese legalmente vincolanti e difficili da riconciliare. Nel caso di decisioni tattiche automatiche, un’auto a guida autonoma seleziona automaticamente il percorso migliore in base a una combinazione di molteplici fonti di informazione. Se si sbaglia strada, si potrebbe arrivare in ritardo a un appuntamento. Tuttavia, in azienda, i sistemi decisionali algoritmici prenderanno in carico le analisi tattiche e le decisioni prese attualmente da analisti e manager aziendali. Gli errori nel giudizio possono avere un impatto sostanziale, finanziario o legale, sul business. Quale governance bisogna dunque adottare verso questi nuovi processi decisionali di AI? E, come nel caso dei veicoli autonomi, questo enorme insieme di dati interconnessi e processi innovativi si estende oltre i confini dell’attività tradizionale dell’azienda. I grandi dello shopping online si espandono verso i negozi fisici, le utilities possono oggi proporre articoli per la casa, e i politici diventano marketer. Quali tecnologie possono gestire tale diversità?

Progettare un business digitale - Il successo o il fallimento nel business digitale dipendono dall’architettura IT, dalle informazioni, dai processi e dalle persone. La vecchia idea di avere sistemi operativi e informativi separati e distinti non funzionerà più. Scegliere una singola tecnologia di elaborazione dati, sia di tipo relazionale sia Hadoop, limita la flessibilità e aumenta il rischio di errori. Bisognerà invece gestire i dati in più posizioni e sistemi, statici o in movimento, accedendovi e utilizzandoli attraverso molteplici strumenti, molti dei quali basati sull’intelligenza artificiale. Tutto questo andrà fatto mantenendo operativi i vecchi sistemi. In breve, serviranno sia la Fiat sia la Ferrari. Quello che serve è una nuova architettura che comprenda tutti i dati e le informazioni utilizzate dall’azienda, tutti i processi - business e IT - che utilizzano le informazioni per guidare le azioni, oltre ai ruoli e ai driver delle persone - tutti gli stakeholder, interni ed esterni - per le quali esiste l’azienda. Questa architettura è “Business unIntelligence” (come definito nella mia opera Barry Devlin, “Business unIntelligence: Insight and Innovation beyond Analytics and Big Data” - Technics Publications, 2013). Nonostante il concetto si sia evoluto dalla sua pubblicazione nel 2013, per tenere conto dei progressi negli ambiti IoT e AI, rimane l’architettura concettuale e logica più completa per il business digitale. In termini tecnologici, si passa dal data warehouse al data lake, per creare l’ecosistema biz-tech del futuro.

Barry Devlin presenterà in autunno per Technology Transfer il seminario “Dalla Business Intelligence al Digital Business: Architettura e Tecnologie” che si terrà a Roma il 24-25 Ottobre 2018.

Una Fiat o una Ferrari? <br />Qual è la più adatta per il business digitale? - Technology Transfer

Uno sguardo Agile - Per capire il passato e progettare il futuro
Arie van Bennekum

Trasformazione Agile
Se il product owner diventa un collo di bottiglia

Sander Hoogendoorn

Una Fiat o una Ferrari?
Qual è la più adatta per il business digitale?

Barry Devlin

Vincere la complessità dei dati. È l’ora dello smart data management
Mike Ferguson

Big Data e Analytics - Se il machine learning accelera anche la data science
Mike Ferguson

I dati al centro del business
Christopher Bradley

I Big Data forniscono il contesto e la ricchezza predittiva attorno alle transazioni di business Avere dati coerenti e di qualità resta fondamentale per il processo decisionale
Barry Devlin

Cosa c’è dietro l’angolo? Cinque mosse per diventare un digital leader
Jeroen Derynck

Managing information technology Gestire l’IT come un business nel business
Mitchell Weisberg

Data integration self-service Miglioramento della produttività o caos totale?
Mike Ferguson

Project manager vecchi miti e nuove realtà
Aaron Shenhar

La catena alimentare dei requisiti
Suzanne Robertson

Come diventare un’azienda data-centric
Lindy Ryan

Enterprise analytical ecosystem - Come comprendere il comportamento online dei clienti e capitalizzare il valore dei dati nell’era Big Data
Mike Ferguson

Agilità? Basta Volere
Suzanne Robertson

Ma la vostra architettura è efficace?
Mike Rosen

Se il NoSQL diventa SQL
Rick van der Lans

La data quality e l’impatto sul business
Danette McGilvray

Business analysis e regole di business By Ronald G. Ross con Gladys S.W. Lam
Ronald Ross

Usare Scrum su larga scala: cosa cambia?
Craig Larman

Le architetture per ridurre il debito tecnico
Mike Rosen

Conversando con un marziano
Suzanne Robertson

Cosa c’è di nuovo nel project management?
Aaron Shenhar

Reinventare la Business Intelligence
Barry Devlin

Il nuovo volto della business intelligence
Shaku Atre

Alla ricerca del valore tra i pomodori nell'orto
John Favaro

I big data cambiano il mercato dei Database Server
Rick van der Lans

Un “superstorm” di informazioni
Barry Devlin

I dieci step per la qualità dei dati
Danette McGilvray

Perché è meglio evitare il private cloud?
Jason Bloomberg

Leonardo da Vinci aveva ragione!
Chris Date

Mobile user experience: Come adottare una strategia sostenibile
James Hobart

Cosa significa occuparsi di architettura?
Mike Rosen

Virtualizzazione dei dati e sistemi di Business Intelligence Agili
Rick van der Lans

Modelli e linguaggi naturali, quale il modo migliore per definire i requisiti?
James Robertson

Extreme Scoping: un approccio Agile all'Edw e alla BI
Larissa Moss

BI², la Business Intelligence al quadrato
Barry Devlin

I test di regressione in ambienti legacy
Randy Rice

Le conseguenze della consumerizzazione e del Cloud
Chris Potts

Come vanno gli affari? Chiedetelo al vostro cruscotto
Shaku Atre

Organizzare team di progetto efficienti in ambienti DW/BI
Larissa Moss

Big Data, come e perché
Colin White

Business Capabilities e l'allineamento del business all'IT
Mike Rosen

Il valore della tassonomia nella ricerca delle informazioni
Zach Wahl

BI, ma il Data Warehouse è ancora necessario?
Colin White

Reinventare la Business Intelligence
Barry Devlin

Il cruscotto delle prestazioni: il nuovo volto della Business Intelligence
Shaku Atre

Modelli e processi di User acceptance testing
Randy Rice

I limiti nel gestire l'IT come un Business
Chris Potts

Le componenti fondamentali del Cloud
George Reese

Metadati e DW 2.0
Derek Strauss

BI Open Source: basso costo e alto valore?
Jos van Dongen

Semplicità e requisiti
Suzanne Robertson

Business intelligence e analisi testuale
Bill Inmon

Extreme Scoping™: approcci agili al DW e alla BI
Larissa Moss

Dalla BI a un'architettura IT di livello Enterprise
Barry Devlin

Ambiente efficiente di ricerca di informazioni
James Hobart

Il Business deve trainare la Strategia IT
Chris Potts

Web database: la questione MapReduce (seconda parte)
Colin White

Web database: la questione MapReduce
Colin White

Misura delle prestazioni. I sette comandamenti
Harry Chapman

Le dieci cose che un architetto deve fare per creare valore
Mike Rosen

Sviluppare applicazioni a prova di sicurezza
Ken van Wyk

The ECM Landscape in 2008
Alan Pelz-Sharpe

Ma chi sono gli operatori dell’informazione?
Colin White

Qualità dell’informazione e trasformazione del management
Larry English

Classificazione sistematica delle informazioni
Zach Wahl

L’uso intensivo del Web nelle applicazioni di Bi
Colin White

Enterprise Search
Theresa Regli

La forza dell'astrazione
Steve Hoberman

La strada verso una BI pervasiva
Cindi Howson

Soa, una strategia di test
Randy Rice

Verso una BI più semplice e a minor costo
Colin White

I contenuti “Killer” del Web
Gerry McGovern

Sviluppo iterativo del software per i Dw
Larissa Moss

Qualità delle Informazioni e Datawarehousing
Larry English

Lo scenario Ecm 2008
Alan Pelz-Sharpe

La nascita del Web 3.0
John Kneiling

Documentazione: il dossier del crimine
Suzanne Robertson

L’impatto del Web 2.0 sui portali delle imprese
Colin White

Le tecniche vincenti di IT Management
Ken Rau

Web 2.0
Ed Yourdon

Web di successo se si conosce il cliente
Gerry McGovern

Un approccio alla BI incentrato sui processi
Colin White

Integrare Master Data Management e BI (Parte Seconda)
Mike Ferguson

Integrare Master Data Management e BI (Parte Prima)
Mike Ferguson

Il Project Manager è una Tata
Suzanne Robertson

Web di successo se si conosce il cliente
Gerry McGovern

L'informazione personalizzata
Colin White

La Tassonomia dell'Impresa
Zach Wahl

Managed Meta Data Environment (II parte)
David Marco

Managed Meta Data Environment
David Marco

Migliorare le applicazioni dell'impresa con Web 2.0
James Hobart

La Balanced Scorecard migliora la Performance dell'IT
Harry Chapman

La fusione dei processi dell'impresa grazie a Soa (II parte)
Max Dolgicer

La fusione dei processi dell'impresa grazie a SOA (I parte)
Max Dolgicer

Volere è Potere, in Ogni Senso
Suzanne Robertson

Dimostrate con i numeri il valore dei contenuti del web
Gerry McGovern

Il Back-end della pianificazione strategica dell'It
Ken Rau

L'audit delle prescrizioni di progetto (II parte)
Suzanne Robertson

L'audit delle prescrizioni di progetto (I parte)
Suzanne Robertson

Il Processo di gestione delle informazioni
Ted Lewis

I requisiti come strumento di gestione dei progetti
Suzanne Robertson

Il futuro è nel contenuto killer del web
Gerry McGovern

Alla ricerca del valore tra i pomodori nell'orto
John Favaro

Rilevare i costi sulla base delle attività
Ken Rau

Un percorso verso l'impresa intelligente (II parte)
Mike Ferguson

Un percorso verso l'impresa intelligente (I parte)
Mike Ferguson

Il Data Store Operativo: un lavoro di martello
Claudia Imhoff

Il data warehouse orientato all'impresa
Michael Schmitz

Dieci punti chiave per realizzare balanced scorecard di successo
Harry Chapman

Content management: i contenuti al primo posto
Gerry McGovern

Applicazioni Web ad alta disponibilità
John Kneiling

Il 2004, sarà l'anno in cui abbandoneremo html?
James Hobart

La tecnologia EII ripropone il data warehousing virtuale?
Colin White

Misurare per Gestire
Ken Rau

Volere è Potere, in Ogni Senso
Suzanne Robertson

Realizzare il CPM e l'integrazione della BI
Mike Ferguson

Tutti i punti della FPA
Koni Thompson

Requiem per il Portale?
Colin White

Business Intelligence: dalla teoria alla realtà (II parte)
Shaku Atre

Business Intelligence: dalla teoria alla realtà (I parte)
Shaku Atre

I portali Corporate e di E-business: la nuova generazione del posto di lavoro
Mike Ferguson

I 10 errori da evitare nella realizzazione di un Meta Data Repository (II Parte)
David Marco

I 10 errori da evitare nella realizzazione di un Meta Data Repository (I parte)
David Marco

Usare i modelli per acquisire l'esperienza di progettazione
James Hobart

Realizzare l'Impresa Intelligente
Colin White

.NET or J2EE - Choosing the Right Web Services Framework
John Kneiling

Progettare Applicazioni Mobili di Successo
James Hobart

La Sociologia del Progetto: Identificare e Coinvolgere tutti i Partecipanti
Suzanne Robertson

Integrare la Business Intelligence nell'Impresa (II parte)
Mike Ferguson

Integrare la Business Intelligence nell'Impresa (I parte)
Mike Ferguson

L'Evoluzione del Portale di e-Business (II parte)
Colin White

L'Evoluzione del Portale di e-Business (I parte)
Colin White

Il Consulente WebEAI: Servizi Web, XML e l'Impresa
John Kneiling

Data Mining: Come Gestire le Relazioni con i Clienti Secondo i Principi del CRM
Weaver James

Articoli del mese - Technology Transfer