Articoli del meseArticoli del mese

Articoli del mese


Stampa articolo

Articolo del Mese - Agosto 2014

Se il NoSQL diventa SQL

Rick van der Lans by Rick van der Lans

Senza dubbio i big data sono una delle tendenze di spicco nel settore IT. Come noto, i big data comportano la memorizzazione, la gestione e l’analisi di enormi quantità di dati. Oggi, le aziende possono scegliere come memorizzare i dati tra le soluzioni basate su SQL o quelle che si basano su NoSQL, come Hadoop, Cassandra o MongoDB. Soprattutto questo secondo gruppo ha riscosso molta attenzione negli ultimi anni. E recentemente sono stati resi disponibili molti prodotti che “avvolgono” un sistema NoSQL in uno strato di SQL: in altre parole, i sistemi NoSQL si stanno trasformando in sistemi SQL. Ma quali sono le ragioni di questa tendenza?
È difficile dare una definizione dei sistemi NoSQL, in quanto sono tutti diversi e hanno in comune solo due cose. In primo luogo, sono stati classificati in un gruppo chiamato NoSQL, e in secondo luogo hanno tutti un’architettura MPP (Massively Parallel Processor) altamente scalabile che permette di distribuire l’elaborazione e lo storage in centinaia di nodi. La loro architettura interna è ideale per scalare in modalità scale-out, cioè in senso orizzontale, mentre i database SQL classici hanno un’architettura progettata per lo scale-up, ovvero in senso verticale. Ma è qui che finisce ogni somiglianza.

Caratteristiche fondamentali - I prodotti NoSQL sono molto diversi dai sistemi SQL, in quanto non organizzano i propri dati in tabelle piatte costituite da colonne, non supportano l’integrità dei dati, non sono limitate a strutture relazionali piatte ma consentono le strutture gerarchiche nei dati, e non supportano un linguaggio di alto livello come SQL, ma solo API e linguaggi di basso livello. Questi diversi concetti di database e di interfacce sono stati implementati per ottime ragioni: infatti, possono essere utilizzati in ambiti big data nei quali le esigenze di storage e di elaborazione sono estremamente elevate.
Tuttavia, quasi tutti gli strumenti più diffusi per il reporting e le analisi esigono che i dati siano organizzati in tabelle SQL, e si aspettano un’interfaccia SQL. Ma soprattutto non funzionano con NoSQL. Inoltre, a causa delle API di basso livello supportate, la produttività è inferiore a quella di SQL e, infine, non tutti gli sviluppatori (in particolare all’interno di reparti BI) hanno esperienza con la programmazione in linguaggi come Java o Python.
Per questi motivi, per utilizzare i noti strumenti di reporting e di analisi unitamente a NoSQL bisogna prima copiare i dati da un sistema NoSQL a uno SQL. Come si può immaginare, questo processo di copia richiede tempo, e conservare per due volte (unicamente per ottenere un’interfaccia SQL) grandi quantità di dati è costoso. È meglio perciò se i dati rimangono all’interno del sistema NoSQL e vi si accede tramite un’interfaccia SQL.

La buona notizia - Sempre più soluzioni si sono rese disponibili per una “SQLizzazione” di NoSQL, con strumenti che consentono alle applicazioni di accedere ai dati memorizzati nei sistemi NoSQL utilizzando SQL. Le soluzioni di SQLizzazione possono essere classificate così:

Driver dedicato: molte soluzioni offrono un’interfaccia SQL su uno o più sistemi NoSQL. Alcuni consentono inoltre di accedere a fonti dati SQL e possono federare i dati archiviati in più fonti dati. Questi driver trasformano le richieste SQL in arrivo nei linguaggi supportati dal sistema NoSQL, nascondendo la complessità dei linguaggi di basso livello. Tra gli esempi vi sono Apache Hive, Cassandra CQL, Cloudera Impala, DataDirect Cloud, Facebook Presto, Hortonworks Stinger, IBM BigSQL, MapR Drill, Quest Toad for Cloud Databases e Salesforce Phoenix.
Server di virtualizzazione dati: i server di virtualizzazione dati offrono caratteristiche paragonabili alla traduzione da SQL a NoSQL vista poco fa, ma con tre principali differenze. I server di virtualizzazione dati supportano funzioni più potenti di ottimizzazione delle query quando si accede alle fonti dati, hanno tecnologie di federazione più mature e offrono funzionalità di sicurezza dei dati e ambienti di progettazione. Tra gli esempi, vi sono Cisco/Composite Information Server, Denodo Platform, Informatica IDS, RedHat JBoss Data Virtualization e Stone Bond Enterprise Enabler Virtuoso.
Database server SQL: alcuni dei database server SQL danno una scelta agli sviluppatori, permettendo di memorizzare le tabelle SQL nel database nativo o in un sistema NoSQL come Hadoop, e il luogo effettivo in cui i dati vengono memorizzati è nascosto alle applicazioni. Gli esempi sono Actian Paraccell, EMC Greenplum UAP, Hadapt, Microsoft Polybase e il database Teradata Aster.

Bisogna però notare che la “SQLizzazione” dei database NoSQL non è così semplice come potrebbe a prima vista sembrare, soprattutto perché le performance rimangono un aspetto molto rilevante. È per questo che tali soluzioni devono affrontare alcune questioni, tra le quali vi sono queste:

• Alcuni dei dati nei sistemi NoSQL sono privi di schema: come può l’interfaccia SQL trasformare questi dati senza schema in dati relazionali con uno schema?
• La maggior parte dei sistemi NoSQL permettono che i record appartenenti alla stessa tabella abbiano diverse serie di colonne, mentre questo concetto non è supportato da SQL.
• Molti sistemi NoSQL supportano costrutti non relazionali come le strutture gerarchiche. Nella terminologia relazionale, questi sarebbero chiamati tabelle nidificate o tabelle NF2 (Non-first normal form). In qualche modo le soluzioni “SQLizzate” devono appiattire queste strutture gerarchiche in strutture relazionali piatte.
• Il join dei dati in SQL è una cosa molto comune da fare. Pertanto, i database server SQL sono sovraccarichi di funzioni per eseguire rapidamente il join. Ma molti sistemi NoSQL non sono rapidi nella funzione join, e preferiscono che i dati siano memorizzati in una qualche maniera de-normalizzata per ridurre al minimo la necessità di effettuare il join. Sarà quindi una vera sfida per le soluzioni di SQLizzazione eseguire rapidamente i join SQL.

Conclusione - La “SQLizzazione” di NoSQL è iniziata e continuerà a evolversi. Quest’anno ci si aspetta che vengano rilasciati nuovi prodotti e vengano rese disponibili versioni rinnovate di quelli esistenti. Si tratta di un fatto positivo in quanto le aziende sono interessate a NoSQL non perché non amano SQL, ma perché hanno bisogno della scalabilità e delle prestazioni di NoSQL. Però vogliono anche la produttività e la facilità di manutenzione di SQL, e la SQLizzazione offrirà il meglio dei due mondi: le prestazioni del NoSQL e la produttività di SQL.

Se il NoSQL diventa SQL - Technology Transfer

Enterprise information catalog. I requisiti per fare la scelta giusta
Mike Ferguson

La nuova era dell’analisi predittiva - Le aziende alla prova del Machine Learning
Frank Greco

Uno sguardo Agile - Per capire il passato e progettare il futuro
Arie van Bennekum

Trasformazione Agile
Se il product owner diventa un collo di bottiglia

Sander Hoogendoorn

Una Fiat o una Ferrari?
Qual è la più adatta per il business digitale?

Barry Devlin

Vincere la complessità dei dati. È l’ora dello smart data management
Mike Ferguson

Big Data e Analytics - Se il machine learning accelera anche la data science
Mike Ferguson

I dati al centro del business
Christopher Bradley

I Big Data forniscono il contesto e la ricchezza predittiva attorno alle transazioni di business Avere dati coerenti e di qualità resta fondamentale per il processo decisionale
Barry Devlin

Cosa c’è dietro l’angolo? Cinque mosse per diventare un digital leader
Jeroen Derynck

Managing information technology Gestire l’IT come un business nel business
Mitchell Weisberg

Data integration self-service Miglioramento della produttività o caos totale?
Mike Ferguson

Project manager vecchi miti e nuove realtà
Aaron Shenhar

La catena alimentare dei requisiti
Suzanne Robertson

Come diventare un’azienda data-centric
Lindy Ryan

Enterprise analytical ecosystem - Come comprendere il comportamento online dei clienti e capitalizzare il valore dei dati nell’era Big Data
Mike Ferguson

Agilità? Basta Volere
Suzanne Robertson

Ma la vostra architettura è efficace?
Mike Rosen

Se il NoSQL diventa SQL
Rick van der Lans

La data quality e l’impatto sul business
Danette McGilvray

Business analysis e regole di business By Ronald G. Ross con Gladys S.W. Lam
Ronald Ross

Usare Scrum su larga scala: cosa cambia?
Craig Larman

Le architetture per ridurre il debito tecnico
Mike Rosen

Conversando con un marziano
Suzanne Robertson

Cosa c’è di nuovo nel project management?
Aaron Shenhar

Reinventare la Business Intelligence
Barry Devlin

Il nuovo volto della business intelligence
Shaku Atre

Alla ricerca del valore tra i pomodori nell'orto
John Favaro

I big data cambiano il mercato dei Database Server
Rick van der Lans

Un “superstorm” di informazioni
Barry Devlin

I dieci step per la qualità dei dati
Danette McGilvray

Perché è meglio evitare il private cloud?
Jason Bloomberg

Leonardo da Vinci aveva ragione!
Chris Date

Mobile user experience: Come adottare una strategia sostenibile
James Hobart

Cosa significa occuparsi di architettura?
Mike Rosen

Virtualizzazione dei dati e sistemi di Business Intelligence Agili
Rick van der Lans

Modelli e linguaggi naturali, quale il modo migliore per definire i requisiti?
James Robertson

Extreme Scoping: un approccio Agile all'Edw e alla BI
Larissa Moss

BI², la Business Intelligence al quadrato
Barry Devlin

I test di regressione in ambienti legacy
Randy Rice

Le conseguenze della consumerizzazione e del Cloud
Chris Potts

Come vanno gli affari? Chiedetelo al vostro cruscotto
Shaku Atre

Organizzare team di progetto efficienti in ambienti DW/BI
Larissa Moss

Big Data, come e perché
Colin White

Business Capabilities e l'allineamento del business all'IT
Mike Rosen

Il valore della tassonomia nella ricerca delle informazioni
Zach Wahl

BI, ma il Data Warehouse è ancora necessario?
Colin White

Reinventare la Business Intelligence
Barry Devlin

Il cruscotto delle prestazioni: il nuovo volto della Business Intelligence
Shaku Atre

Modelli e processi di User acceptance testing
Randy Rice

I limiti nel gestire l'IT come un Business
Chris Potts

Le componenti fondamentali del Cloud
George Reese

Metadati e DW 2.0
Derek Strauss

BI Open Source: basso costo e alto valore?
Jos van Dongen

Semplicità e requisiti
Suzanne Robertson

Business intelligence e analisi testuale
Bill Inmon

Extreme Scoping™: approcci agili al DW e alla BI
Larissa Moss

Dalla BI a un'architettura IT di livello Enterprise
Barry Devlin

Ambiente efficiente di ricerca di informazioni
James Hobart

Il Business deve trainare la Strategia IT
Chris Potts

Web database: la questione MapReduce (seconda parte)
Colin White

Web database: la questione MapReduce
Colin White

Misura delle prestazioni. I sette comandamenti
Harry Chapman

Le dieci cose che un architetto deve fare per creare valore
Mike Rosen

Sviluppare applicazioni a prova di sicurezza
Ken van Wyk

The ECM Landscape in 2008
Alan Pelz-Sharpe

Ma chi sono gli operatori dell’informazione?
Colin White

Qualità dell’informazione e trasformazione del management
Larry English

Classificazione sistematica delle informazioni
Zach Wahl

L’uso intensivo del Web nelle applicazioni di Bi
Colin White

Enterprise Search
Theresa Regli

La forza dell'astrazione
Steve Hoberman

La strada verso una BI pervasiva
Cindi Howson

Soa, una strategia di test
Randy Rice

Verso una BI più semplice e a minor costo
Colin White

I contenuti “Killer” del Web
Gerry McGovern

Sviluppo iterativo del software per i Dw
Larissa Moss

Qualità delle Informazioni e Datawarehousing
Larry English

Lo scenario Ecm 2008
Alan Pelz-Sharpe

La nascita del Web 3.0
John Kneiling

Documentazione: il dossier del crimine
Suzanne Robertson

L’impatto del Web 2.0 sui portali delle imprese
Colin White

Le tecniche vincenti di IT Management
Ken Rau

Web 2.0
Ed Yourdon

Web di successo se si conosce il cliente
Gerry McGovern

Un approccio alla BI incentrato sui processi
Colin White

Integrare Master Data Management e BI (Parte Seconda)
Mike Ferguson

Integrare Master Data Management e BI (Parte Prima)
Mike Ferguson

Il Project Manager è una Tata
Suzanne Robertson

Web di successo se si conosce il cliente
Gerry McGovern

L'informazione personalizzata
Colin White

La Tassonomia dell'Impresa
Zach Wahl

Managed Meta Data Environment (II parte)
David Marco

Managed Meta Data Environment
David Marco

Migliorare le applicazioni dell'impresa con Web 2.0
James Hobart

La Balanced Scorecard migliora la Performance dell'IT
Harry Chapman

La fusione dei processi dell'impresa grazie a Soa (II parte)
Max Dolgicer

La fusione dei processi dell'impresa grazie a SOA (I parte)
Max Dolgicer

Volere è Potere, in Ogni Senso
Suzanne Robertson

Dimostrate con i numeri il valore dei contenuti del web
Gerry McGovern

Il Back-end della pianificazione strategica dell'It
Ken Rau

L'audit delle prescrizioni di progetto (II parte)
Suzanne Robertson

L'audit delle prescrizioni di progetto (I parte)
Suzanne Robertson

Il Processo di gestione delle informazioni
Ted Lewis

I requisiti come strumento di gestione dei progetti
Suzanne Robertson

Il futuro è nel contenuto killer del web
Gerry McGovern

Alla ricerca del valore tra i pomodori nell'orto
John Favaro

Rilevare i costi sulla base delle attività
Ken Rau

Un percorso verso l'impresa intelligente (II parte)
Mike Ferguson

Un percorso verso l'impresa intelligente (I parte)
Mike Ferguson

Il Data Store Operativo: un lavoro di martello
Claudia Imhoff

Il data warehouse orientato all'impresa
Michael Schmitz

Dieci punti chiave per realizzare balanced scorecard di successo
Harry Chapman

Content management: i contenuti al primo posto
Gerry McGovern

Applicazioni Web ad alta disponibilità
John Kneiling

Il 2004, sarà l'anno in cui abbandoneremo html?
James Hobart

La tecnologia EII ripropone il data warehousing virtuale?
Colin White

Misurare per Gestire
Ken Rau

Volere è Potere, in Ogni Senso
Suzanne Robertson

Realizzare il CPM e l'integrazione della BI
Mike Ferguson

Tutti i punti della FPA
Koni Thompson

Requiem per il Portale?
Colin White

Business Intelligence: dalla teoria alla realtà (II parte)
Shaku Atre

Business Intelligence: dalla teoria alla realtà (I parte)
Shaku Atre

I portali Corporate e di E-business: la nuova generazione del posto di lavoro
Mike Ferguson

I 10 errori da evitare nella realizzazione di un Meta Data Repository (II Parte)
David Marco

I 10 errori da evitare nella realizzazione di un Meta Data Repository (I parte)
David Marco

Usare i modelli per acquisire l'esperienza di progettazione
James Hobart

Realizzare l'Impresa Intelligente
Colin White

.NET or J2EE - Choosing the Right Web Services Framework
John Kneiling

Progettare Applicazioni Mobili di Successo
James Hobart

La Sociologia del Progetto: Identificare e Coinvolgere tutti i Partecipanti
Suzanne Robertson

Integrare la Business Intelligence nell'Impresa (II parte)
Mike Ferguson

Integrare la Business Intelligence nell'Impresa (I parte)
Mike Ferguson

L'Evoluzione del Portale di e-Business (II parte)
Colin White

L'Evoluzione del Portale di e-Business (I parte)
Colin White

Il Consulente WebEAI: Servizi Web, XML e l'Impresa
John Kneiling

Data Mining: Come Gestire le Relazioni con i Clienti Secondo i Principi del CRM
Weaver James

Articoli del mese - Technology Transfer